Arc Forumnew | comments | leaders | submitlogin
1 point by almkglor 6004 days ago | link | parent

Both ways seem quite OS-specific to me ^^

Hmm. This will also have to be done in arc2c too.



1 point by stefano 6004 days ago | link

I don't think there is some way to avoid using OS specific functions for async IO. Abstracting this shouldn't be very hard, though.

-----

1 point by shader 6003 days ago | link

Well, there is a Boost library for cross-platform threading. We could just use that and "simulated" async using threads to offload the synchronous io. Now, maybe that's a bad idea, and we need to use some abstracted os specific async libraries, but it would work.

Boost also seems to have plenty of libraries that would be useful for SNAP. How is that going anyway, almkglor? I should probably ask questions pertaining to that subjects in it's own thread.

Pretty quiet around here. Hopefully that means everyone's busy ;)

-----

1 point by almkglor 6003 days ago | link

> Well, there is a Boost library for cross-platform threading. We could just use that and "simulated" async using threads to offload the synchronous io.

Boost also has asio, but it appears to be concentrated more on socket I/O than I/O in general.

What I would like is to have a general-purpose asynchronous I/O library, which would handle all details of asynchronicity.

Basically, I intend to allow SNAP to be compiled in two modes:

1. Single worker thread, multiple process. For cases where the OS doesn't have decent threads (dorky embedded systems? LOL, quite a few of the embedded systems I've seen recently actually have decent threads)

2. Multiple worker OS-level threads, single runqueue.

async I/O is needed for 1, and would be nice for 2: in case 2, if a worker thread blocks on synchronous I/O, the others will still fetch processes to run from the runqueue, although the blocked worker thread is one less thread that can work.

However in case 1, there's just one thread, so it can't block.

-----